

Health and Safet

T HSE

Validation of the Hazard Grouping in Control Banding

Finding the best hazard grouping to establish "Kick-off" levels (next presentation)

Theo Scheffers, Geert Wieling, Caroline Coucke.

nd Safety Executive's (HSE's) guide COSHH trol chemicals.1 It replaces the priced publication -H essentials (ISEN 978 0 7176 2434 8) and parth G193.1 It complements and updates the articles publi

Control Banding (CB)

a generic technique for assessing and managing workplace exposure risks:

- without the use of an Occupational Exposure Limit Value (OELV)
- with the use of grouped Health Hazard Identifiers like the EU R-phrases or EU/GHS H3##-statements

The most

Identified Control Banding schemes (1)

Validation CB schemes. 20 minutes

Identified CB Schemes (2)

- 7 R-Phrases based CB schemes,
 - R-phrases will be phased out in 2015
- REACH CSA Part E, limited # H-statements
- ILO Toolbox with GHS classifications
- NIOSH Exposure banding process
- 3 CLP H-Statements based CB schemes are enrolled
 - See next slide

June 4, 2014

methods

measurement

and

S,TEO

J O

database

comprehensive

H-statement based schemes selected

- COSHH Essentials (HSE: Health and Safety Executive)
- einfaches Maßnahmenkonzept Gefahrstoffe (EMKG) (BAuA: Federal Institute for Occupational Safety and Health). Separated hazard grouping for skin route
- GHS Spaltenmodell; based on TRGS600 (DGUV IFA: Institute for Occupational Safety and Health of the German Social Accident Insurance)

most

24

comprehensive database of OEL's and measurement methods

Validation (1) theoretical base

- H-statements are a qualitative and quantitative mix
 - 2 to 5 dose levels: toxicity for different routes (H 300 thru 332)
 - 1 or 2 Severity levels: irritation, corrosive, sensitization
 - 3 to 5 levels of causality and relevance for human: Carcinogenic, Mutagenic Reprotoxic
 - Special single warnings: lactation
 - Examples : next slide

Grouping of H-statements, resulting in an ranked measure. What kind of ranking?

DOHSBASE

Hazard grouping (simplyfied)

Hazard group	Health Hazard Identifiers (HHI) like R-phrases, H- statements, (inter)national classifications (IARC, etc.)
5/E	Human Carcinogen R45, 49, H350(i), IARC 1, 2a
4/D	Very toxic, R26, H330, Possible Carc. R40, H351, IARC 2b.
3/C	Toxic R23,H331, Corrosive 34, 35, H314, EUH071
2/B	Harmful R20, H332
1/A	Irritation R37, H335
0/-	Harmless. R36, 38; non dangerous; REACH Annex IV
Incr	easing hazard group # is linked to a more structural

& stringent control regime

Validation of CB hazard grouping

R-phrases and H-statements don't match ! Acute toxicity: LD50 – oral mg/kg

Dose	R- phrase	hazard group	CLP hazard class & - category	H-Statement	Hazard group
<5	28	D	Acute Tox 1	300	D
5-25	28	D	Acute Tox 2	300	D
25-50	25	С	Acute Tox 2	300	D
50-200	25	С	Acute Tox 3	301	С
200-300	22	В	Acute Tox 3	301	С
300-2000	22	В	Acute Tox 4	302	В

Conclusions theoretical base

- There is no theoretical base for an objective allocation in 3 to 5 ordered hazard groups
 - health hazard statements are ordered, dichotomous or qualitative entities. Mutually they are categorical.
- R-phrase and H-statement based hazard grouping differ
- 53 EU health R-phrases and 42 H3##/EUH## health statements result in 85 translation combinations.
 - Most CB schemes do not take the differences between R-phrases to H-statement into account.
 - Substances may end up in a different hazard group when switching from an R-phrase to H-statement based Control Band Scheme

Validation (2) reproducibility

If H-statements cannot be grouped theoretically what is the reproducibility of different hazard groupings?

In an experimental setting: repeated, independent trails must result in the same outcome

 multiple institutions throughout the world have performed hazard grouping (more or less independent)

Reproducibility: different H-statement grouping

Hazard category	DGUV IFA Spaltenmodell (TRGS600)	COSHH Essentials	BAUA EMKG (Einfaches Maßnahmenkonzept) (inhalation)
4/E	H300, H310, H330, EU032 H340 (AGS Mut 1AB) H350, H350i (AGS K1/2 & TRGS 906)	H334, H340, H341, H350, H350i	H340, H350, H350i, H360F (TRGS 905 & 906)
3/D	H301, H311, H331 EUH070, EUH029, EUH031 H370, H317 (Sh), H334 (Sa), H318 H360 _{xy} (AGS R _{EF} 1/2) H351 (AGS K3), H341 (AGS M3), H372	H300, H310, H330 H351, H360 _{xy} , H361, H362, H372	H300, H330, H360D, H372, EUH032
2/C	H302, H312, H332 H314 (pH \ge 11,5, pH \le 2), H371, EUH071 H361 _{f/d} , H373, H362 non-toxic gases which may cause asphyxiation	H301, H311, H331, H314, H317, H318 , <mark>H335</mark> , H370, H373, EUH071	H301, H331, H314, H334, H341, H351, H361f/d, H370, H371, H373, EUH031 (TR GS 907)
1/B	H315, H319 damage to the skin during wet work H304, EUH066, H335, H336 Substances chronically harmful in other ways (no H-statement, but still hazardous)	H302, H312, H332 H371	Н302, Н332, Н318
0/A	substances which experience shows to be harmless (e.g. water, sugar, paraffin etc.)	H303, H304, H305, H313, H315, H316, H319, H320, H333, H336, EUH066 and all H-numbers not otherwise listed	H319, H335, H336, H304 No health hazard H-statements

DOHSBASE

Reproducibility of CB hazard grouping

- CB hazard grouping is a combination of:
 - Basic toxicological knowledge
 - Professional judgement
 - Risk perception
 - National sentiment
- The reproducibility of CB hazard grouping is limited

June 4, 2014

measurement methods

and

S,TEO

comprehensive database of

Som

Validation of CB hazard grouping

DOHSE

Validation (3): compare with standard

- A "golden" standard does not exist
- OELVs are used to validate hazard grouping
 - OELV is a quantitative measure
 - Substances with both OELV and HHI exists
- Is anybody in the audience aware of a better standard ? (afterwards)

DOHSBase Compare www.dohsbase.com

172000 substances
225000 synonyms
40000 PhysChem properties
8000 harmonized CLPs
3800 OELV
2000 Kickoff levels
2000 REACH DN/MELs
2500 analytical methods

· · · · · · · · · · · · · · · · · · ·								_	
ି \delta 🎢								Se	
Search Identification Pro				\$	Limit	values	Sampling n 4		
\$	~	\$						c -	
Synonym	CAS#	EC#	Substance	5	Limit values	Sampling methods		m	
e'			Sar	nnlina me	thod	7	Principle of	E A	
			MD	HS 25/3 rel	ated method BIA 76	70	Active	-	
rondisocyanaat			MD	4S 25/3 rel	ated method BIA 76	70	Active		
methyleendisocy	anaat		MD	HS 25/3 rel	ated method BIA 76	70	Active	-	
ium metallisch			MD	HS 29/2	Active				
alt			MD	HS 30/2	Active				
octylitalaat{o-}			MD	MDHS 32					
tylftalaat{o-}			MD	MDHS 32					
ides, inorganic an	d soluble		MD	4S 35/2			Active		
waterstof			MD	HS 35/2			Active		
waterstof			MD	HS 35/2			Active		
ides, inorganic an	d soluble		MD	4S 35/2			Active		
a, crystalline (Quar	[2]		MD	HS 38 respi	rabel stof ger. meth.	BIA 8522, NIOSH 7602	Active		
na metallisch			MD	HS 46/2			Active		
nazouten, water o	piosbaar		MD	HS 46/2			Active		
dieen(1,3-)			MD	HS 53/2			Active		
renes, tubular			MD	HS 59 fibre:	3		Active		
vezels, superfin			MD	HS 59 fibre:	\$		Active		

Database with hazard groups & OELV

NAME	- N	/IG_M3 💌	PPM	\mathbf{v}	Reference 🗐	r so	DR 💌	STATE 💌	EMKG_HO 🔻	IFA_SPLT_H 💌	COSHH_F -	H_PHRASES
Aluminium		4	ļ.		DFG 2013, Mitteilung 49		301	Solid	1	1	1	H261 H228
Aluminum chloride		0,05	i		Gr 2009/02OSH		201	Solid	4	3	4	H314
Tetraethylorthosilicaat				1,2	Gr 2000/15OSH131		201	Liquid	2	2	3	H226 H332 H319 H335
Tetraethylsilicaat				5	SCOEL-SUM 064		211	Liquid	2	2	3	H226 H332 H319 H335
Fosfor, wit en geel		0,01			DFG 2013, Mitteilung 49		301	Solid	4	4	4	H250 H330 H300 H314 H400
Fosfortrichloride				0,3	2013 TLVs and BEIs with 7th	1	311	Liquid	4	4	4	H330 H300 H373** H314
Fosforyltrichloride				0,1	2013 TLVs and BEIs with 7th	1	311	Liquid	4	4	4	H330 H372** H302 H314
Fosforpentoxide		1			SEG-SUM 014 EUR-15091: 39	-4	111	Solid	3	2	3	H314
Tributylfosfaat			0	0,18	2013 TLVs and BEIs with 7th	1	201	Solid/Liquid	4	3	4	H351 H302 H315
Tributyl phosphate		5	5		2013 TLVs and BEIs with 7th	1	311	Solid/Liquid	4	3	4	H351 H302 H315
Triorthocresylfosfaat		0,1			2013 TLVs and BEIs with 7th	1	311	Liquid	3	3	3	H370** H411
Dichloorvos			0	0,11	DFG 2013, Mitteilung 49		301	Solid/Liquid	4	4	4	H330 H311 H301 H317 H400
Mevinfos		0,01			2013 TLVs and BEIs with 7th	1	311	Solid/Liquid	4	4	4	H310 H300 H400 H410
Mevinfos			0	0,01	DFG 2013, Mitteilung 49		301	Solid/Liquid	4	4	4	H310 H300 H400 H410
Trichloorfon		1			2013 TLVs and BEIs with 7th	1	311	Solid	2	3	3	H302 H317 H400 H410
Tetraethylpyrofosfaat			0,	005	DFG 2013, Mitteilung 49		301	Solid	4	4	4	H310 H300 H400
Tetraethyldithiopyrofosfa	at	0,1			SEG-SUM 069		111	Solid/Liquid	4	4	4	H310 H300 H400 H410
Demeton-O			0	0,01	Gr 2000/15OSH068		201	Liquid	4	4	4	H310 H300 H400
Demeton-S			0	0,01	Gr 2000/15OSH068		201	Liquid	4	4	4	H310 H300
Demeton-S-methyl		0,01			Gr 2000/15OSH072		201	Solid/Liquid	3	3	3	H311 H301 H411
Demeton-S-methyl		0,05	i		2013 TLVs and BEIs with 7th	1	311	Solid/Liquid	3	3	3	H311 H301 H411
Foraat		0,02	2		Gr 2000/15OSH075		201	Liquid	4	4	4	H310 H300 H400 H410
Foraat		0,05	i		2013 TLVs and BEIs with 7th	1	311	Liquid	4	4	4	H310 H300 H400 H410
Parathion		0,1			DFG 2013, Mitteilung 49		301	Liquid	4	4	4	H330 H300 H311 H372** H400 H410
Parathionmethyl		0,02			2013 TLVs and BEIs with 7th	1	311	Solid	4	4	4	H226 H330 H300 H311 H373** H400 H410
Ethyl-p-nitrofenylthiobenz	zee	0,5	i		DFG 2013, Mitteilung 49		301	Solid	4	4	4	H310 H300 H400 H410
Coumaphos		0,05	i		2013 TLVs and BEIs with 7th	1	311	Solid	4	4	4	H300 H312 H400 H410
Azinfos-methyl		0,2			DFG 2013, Mitteilung 49		301	Solid	4	4	4	H330 H300 H311 H317 H400 H410
Diazinon		0,1			DFG 2013, Mitteilung 49		301	Solid/Liquid	2	2	2	H302 H400 H410
Malathion		15			DFG 2013, Mitteilung 49		301	Liquid	2	3	3	H302 H317 H400 H410
Ethion		0,05			2013 TLVs and BEIs with 7th	1	311	Liquid	3	3	3	H301 H312 H400 H410

Validation of CB hazard grouping

Results hazard grouping OELV distributions

Per hazard group and physical state the OELV distribution is constructed Next slides:

- COSHH Essentials HSE
- EMKG einfaches Maßnahmenkonzept Gefahrstoffe BAuA
- IFA-spaltenmodell/TRG600 DGU

OELV distributions gas/vapour per IFA-TRGS6_H hazard group

Results – COSHH vapour/gas

OELV distributions vapour/gas per COSHH_H hazard group

Results – EMKG (inhalation) vapour/gas

OELV distributions vapours per EMKG-HOI grouped hazard classification

Results – IFA/TRGS600 vapour/gas

OELV distributions gas/vapour per IFA-TRGS6_H hazard group

Results – COSHH dust/aerosol

OELV distributions dust/aerosol per COSHH_H hazard group

Results – EMKG (inhalation) dust/aerosol

OELV distributions solids per EMKG-HOI grouped hazard classification

Results – IFA/TRGS600 dust/aerosol

OELV distributions solids per IFA-TRGS6_H hazard group

June 4, 2014

Results hazard group OELV distributions

of OEL's and measurement methods

ase

Observationally the OELV distribution strongly indicates that hazard grouping is an ordered measure but that the CB Schemes differ in power

OELV distribution free and trend

Physical state ->	VA	POUR/0	GAS	DUST/AEROSOL			
Institution/ parameter	СОЅНН	EMKG	IFA	сознн	EMKG	IFA	
P(Kruskal-Wallis)	8E-47	8E-45	4E-56	3E- 27	6E-19	2,1E-22	
Fraction variance explained by grouping	0,33	0,29	0,40	0,35	0,27	0,25	
P(log, regression coefficient <> 0)	3E-54	1E-47	1E-70	2E-27	4E-24	2,1E-20	

The best OELV-hazard group performances:

- IFA-spaltenmodell/TRG600 for vapour/gas
- COSHH Essentials for dust/aerosol

Conclusions on hazard grouping

Hazard grouping in CB schemes is an ordered measure:

- observationally it explains part of OELV dispersion
- it lacks uniformity between institutions (the whole CB system depends on it !)
- Working condition control depends on it !

Despite the short comings, hazard grouping and OELV are strongly related, making it suitable to establish kick-off levels (earlier presentation)

June 4, 2014

method

measure

and

OEL's

P

comprehensive database

Recommendations

To really fulfil the claim of helping SME's with a simple tool:

- Develop and use one universal Control Banding scheme
- Optimize hazard grouping of H-statement by minimizing OELV dispersion (GSD), maximizing OELV location (GM) differences and optimizing Lognormal goodness-of-fit

DOHSBASE

Health and Safe Executive

The technical basis for COSHH essentials: Easy steps to control chemicals

 This separt summarises the technical basis of the genetic data assessment columns used in the hearth and starting blockwich - (Hearth Starting estimation data and the starting of the starting of the priority publication the technical tests of COOSH-Research (SERS 1976 OTTA 6334 8) and party reprises publication HSG01831. It complements and updates the strokes publication in the Annaha of Cooperational Argingene. 144

Dust/aerosol

Thank you!

Theo.Scheffers@dohsbase.nl

